In-Space *Power Forecast* for Lunar Power & Light

International Space Development Conference Saint Louis, Missouri May 26, 2017

Brad R. Blair

Founder and General Partner NewSpace Analytics LLC

• Power / energy to electrolyze water for space propellant (interpolation required)

power to electrolyze water (MWh)		2010	2025	2040	2055	2070	year		
	LEO depot	14	2598	14311	18576	139923	assumes 6kWh/kg of H2O		
	EML1 depot	0	2549	18797	33207	258947			
	Moon Surf depot	0	78	2892	4624	27987			
	Phobos depot	0	30	1970	9465	72505			
	Mars Surf depot	0	0	2050	10319	73382			
energy to electrolyze water (GJ)		2010	2025	2040	2055	2070	year		
	LEO depot	3.8	722	3975	5160	38868	assumes 3.6kJ/Wh		
	EML1 depot	0	708	5221	9224	71930			
	Moon Surf depot	0	22	803	1285	7774			
	Phobos depot	0	8.3	547	2629	20140			
	Mars Surf depot	0	0	569	2866	20384			

- Key Insight: *Propellant* requires *Power*
- Economic Framework for space propellant
- **Prior Art**: Quantitative economic modeling of space resource supply & demand
- Location of primary Space Power Markets

- 25 years ago I was writing about mine and equipment design for the moon
- 20 years ago I started my first private space startup (it failed no market) and started a marketing campaign for LEDA bonds
- 15 years ago I published the first integrated lunar economic model as a phd econ student
- 10 years ago I was a consultant to Lockheed, Raytheon and Bechtel for a NASA return to the moon
- 5 years ago I worked to rebuild isdac and give it a biz model (sue for debris cleanup) and make an asteroid boulder grabber
- 0 today I am writing and publishing models about the growth of in space markets

FRAMEWORK FOR SPACE MINERAL & ENERGY RESOURCES

The Case for Commercial Lunar Ice Mining

by

Brad R. Blair, Javier Diaz, Michael B. Duke, Center for the Commercial Applications of Combustion in Space, Colorado School of Mines, Golden, Colorado

Elisabeth Lamassoure, Robert Easter, Jet Propulsion Laboratory, Pasadena, California

Mark Oderman, Marc Vaucher CSP Associates, Inc., Cambridge, Massachusetts

December, 2002

http://www.isruinfo.com//docs/LDEM_Draft4-updated.pdf

- Model Structure
 - Architecture
 - Parametric sizing
 - Demand models
 - Cost model
 - Feasibility
- Goals of Modeling
 - Determine feasible conditions (Go / No Go)
 - Insight into critical assumptions
 - Insight into systems dynamics (sensitivity)
 - Identification of critical risk factors
 - Technology sensitivity analysis (investment prioritization)

IN-SPACE POWER DEMAND -ECONOMIC MODEL DEVELOPMENT

Space Mineral Resources

A Global Assessment of the Challenges and Opportunities

Editors: Arthur M. Dula Zhang Zhenjun

of Astronautics **nternational Academy**

Study Leadership: Art Dula Zhang Zhenjun

Secretariat: Anat Friedman

Research Staff: Brad Blair Jason Juren

Editorial Staff: Dr. Peter Swan Roger Lenard Dr. Cathy Swan Shirazi Jaleel-Khan

(IAA Cosmic Study 3.17)

Arthur M Dula

- Space lawyer and
- patent attorney Literary executor for Robert A. Heinlein
- Chairman and founder of Excalibur Almaz

Zhang Zhenjun Secretary General, China Institute of

- Space Law Founding Editor-in-Chief, China National Yearbook of Space Law Studies
- Resident Director, Chinese Society of **Astronautics**

Economic Assumptions

- Water is the "propellant of choice"
- Customers: Space propellant and consumables
- Population forecast = 10,000 people on Mars
- Estimated unit consumption *per human*
- Estimated in-space logistics flows
- Simple approximations are favored vs. high model fidelity (comprehensibility bias)

10,000 people by 2070

SMR-Space Infrastructure Forecast / In	-Space Pop	ulation Mo	del		
year	2010	2025	2040	2055	2070
growth rate per period (specified)		15%	15%	15%	15%
number of people in space	6	49	397	3233	26304
population ratios through time		100%	100%	100%	100%
LEO outpost	100%	75%	55%	35%	30%
EML1 outpost		20%	20%	10%	10%
Moon Surf outpost		4%	17%	20%	20%
Phobos outpost		1%	3%	5%	5%
Mars Surf outpost			5%	30%	35%
in-space population distribution	2010	2025	2040	2055	2070
LEO outpost	6	37	218	1131	7891
EML1 outpost	0	10	79	323	2630
Moon Surf outpost	0	2	68	647	5261
Phobos outpost	0	0	12	162	1315
Mars Surf outpost	0	0	20	970	9206

Propellant Flow (quantity)

Store IA4

SPACE POWER DEMAND FORECAST

• Note: This is only for electrolysis of water for propellant (quantity will increase with other products)

power to electrolyze water (MWh)		2010	2025	2040	2055	2070	year		
	LEO depot	14	2598	14311	18576	139923	assumes 6kWh/kg of H2O		
	EML1 depot	0	2549	18797	33207	258947			
	Moon Surf depot	0	78	2892	4624	27987			
	Phobos depot	0	30	1970	9465	72505			
	Mars Surf depot	0	0	2050	10319	73382			
energy to electrolyze water (GJ)		2010	2025	2040	2055	2070	year		
	LEO depot	3.8	722	3975	5160	38868	assumes 3.6kJ/Wh		
	EML1 depot	0	708	5221	9224	71930			
	Moon Surf depot	0	22	803	1285	7774			
	Phobos depot	0	8.3	547	2629	20140			
	Mars Surf depot	0	0	569	2866	20384			

CONCLUSIONS

Space Myths and Truth

MYTH

- High cost space access
- Lack of customers
- Extreme environments
- Technical failures
- Low systems reliability
- Slow advancement
- Money should be spent on the poor
- Human beings are meant to stay on earth

TRUTH

- Reusability lowers costs
- Humans will spend
- Enabling physics
- Rapid learning
- Failure is frequently rewarded
- TRL chasm of death
- Spinoffs also help the poor
- The dinosaurs were meant to stay here too